
Bari, 27 Febbraio 2010 Nicoletta Resta Dipartimento di Biomedicina dell'Età Evolutiva UOC Lab. Genetica Medica

"INDAGINI GENETICHE: QUANDO E PERCHE'"

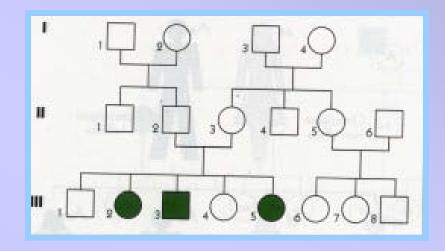
EREDITA' MENDELIANA CLASSICA

Tabella 5.1 Ereditarietà mendeliana nell'uon
--

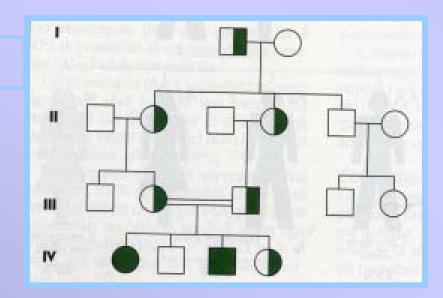
Loci	Autosomici	X-Linked	Y-Linked	Mitocondriali	Totali
Geni a sequenza nota	9.934	457	48	37	10.477
Fenotipo con gene a sequenza nota	2.016	177	2	26	2.221
Fenotipi mendeliani senza gene noto	1.361	135	4	0	1.500
Fenotipi potenzialmente mendeliani	2.092	147	2	0	2.241
Totali	15.403	917	56	63	16.439

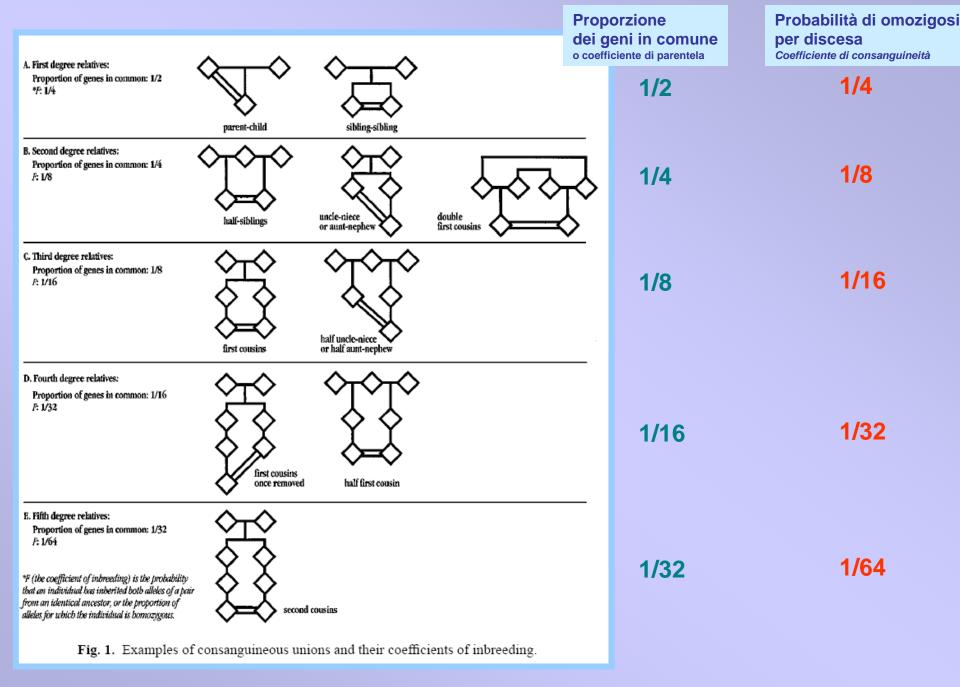
Neri G, Genuardi M. Genetica umana e medica. Elsevier Masson, Milano, 2007

~ 600 E C M 1 affetto ogni 200-250 nati

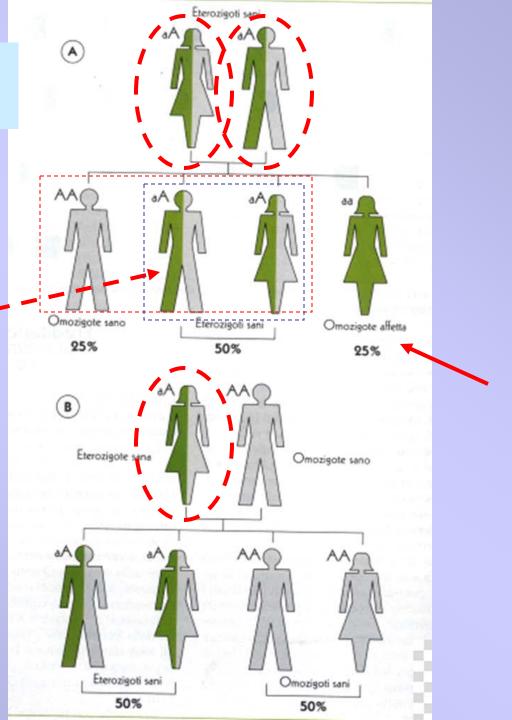

- > EREDITA' AUTOSOMICA RECESSIVA
- > X-LINKED
- > EREDITA' AUTOSOMICA DOMINANTE
- > EREDITA' MATRILINEARE O MITOCONDRIALE

10.000 Enzimi

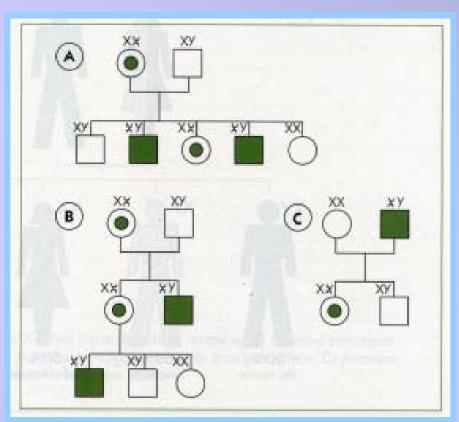

EREDITA' AUTOSOMICA RECESSIVA

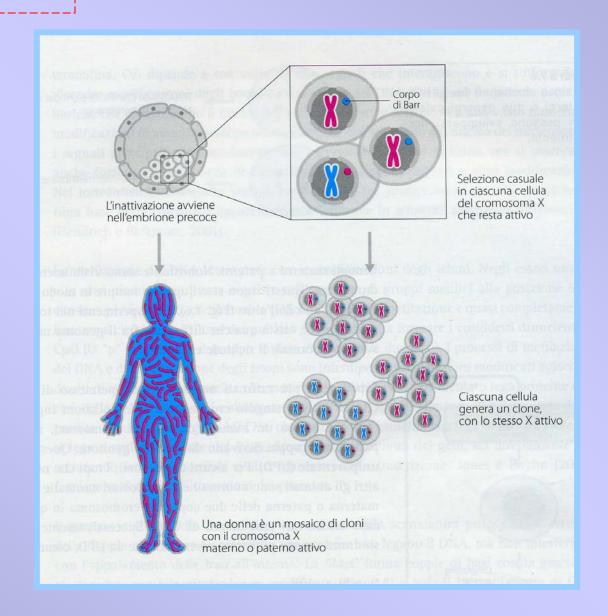

Genitori sani

Orizzontale


Consanguineità!

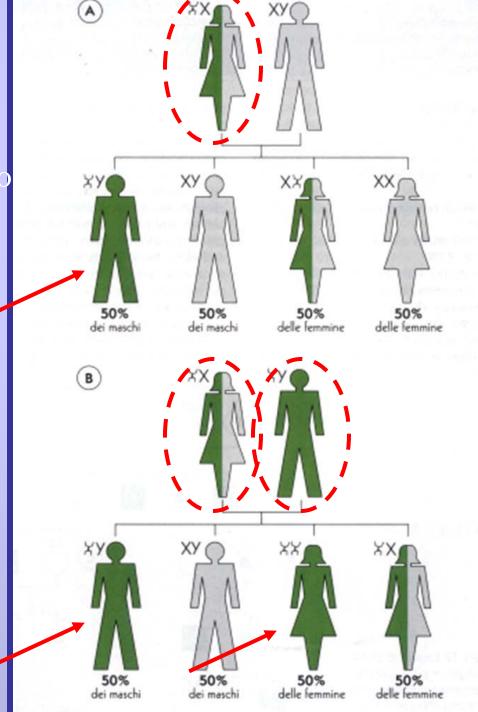
Rischio Riproduttivo In caso di:


2/3

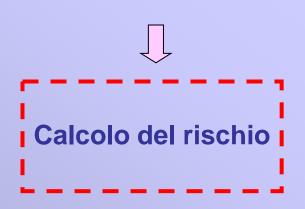

EREDITA' X-LINKED recessiva

Sono portatrici obbligate le donne:

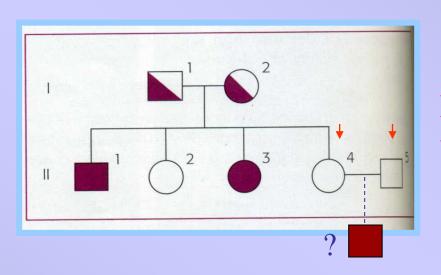
- con più di un figlio maschio affetto
- con un fratello ed un figlio maschio affetto
- figlie di un maschio affetto emizigote (con paternità certa)



Inattivazione dell'X

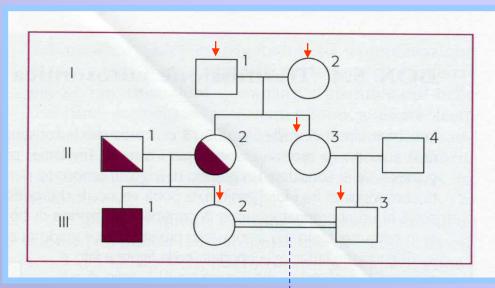

M. X-linked Recessive

Rischio Riproduttivo In caso di:


✓ Eterogeneità allelica

✓ Impossibilità di evidenziare mutazioni

Analisi indiretta utilizzando marcatori del DNA vicini al gene

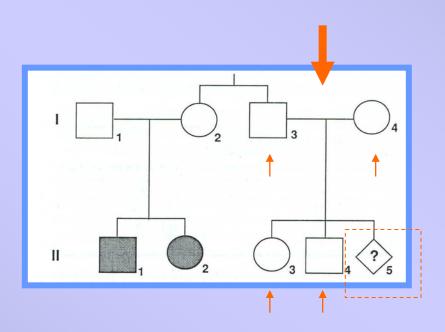


Calcolo del rischio Aut. Recessiva

Rischio di avere un figlio affetto

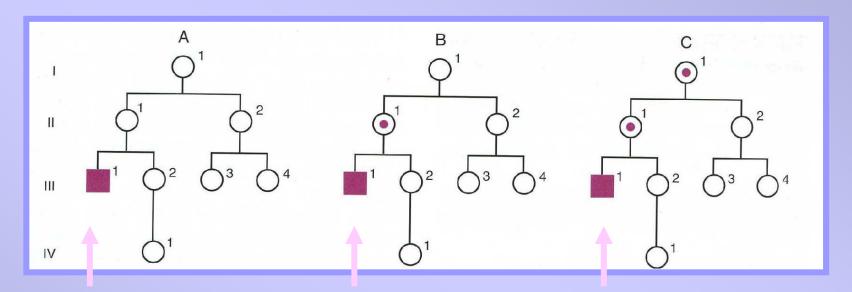
...0,33 %

[2/3 X Freq.eterozigoti nella popolazione X 1/4]
[1/50]



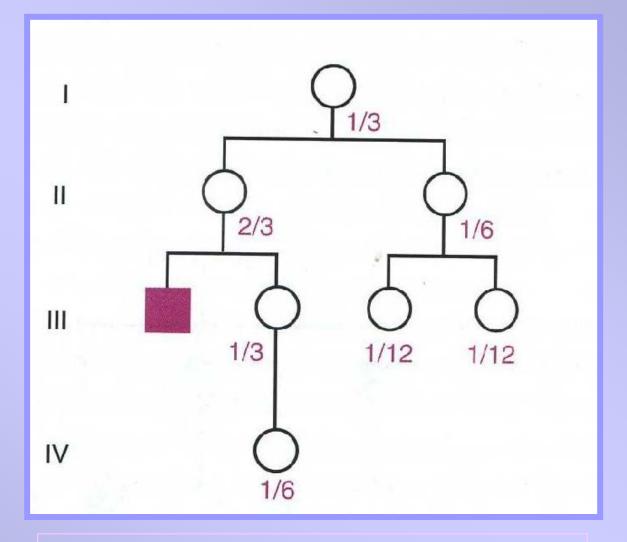
Rischio di avere un figlio affetto

...4 %


[2/3 x 1/4 x 1/4]

Calcolo del rischio A R

1/400 --- 1/708


Calcolo del rischio X- linked

Neomutazione

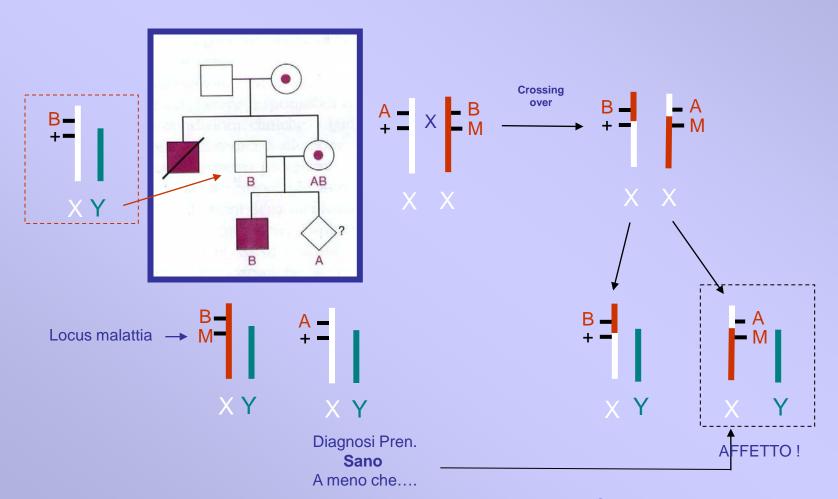
Madre portatrice di una neomutazione

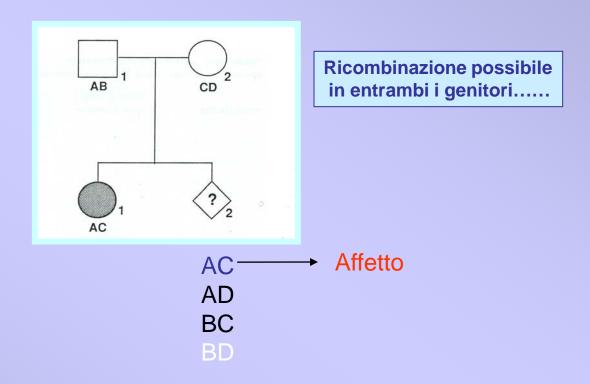
Sia la madre che la nonna Sono portatrici

Rischio di essere portatrice per tutte le donne

Stima del rischio suscettibile di modificazioni

✓ Eterogeneità allelica

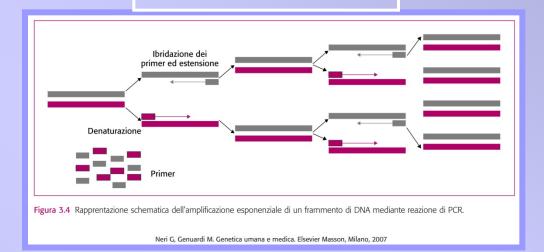

✓ Impossibilità di evidenziare mutazioni


Analisi indiretta utilizzando marcatori del DNA vicini al gene

Analisi indiretta utilizzando marcatori del DNA vicini al gene

Sbaglio la mia diagnosi in relazione Alla distanza tra il marcatore ed il gene malattia

Analisi indiretta utilizzando marcatori del DNA vicini al gene



Analisi molecolare

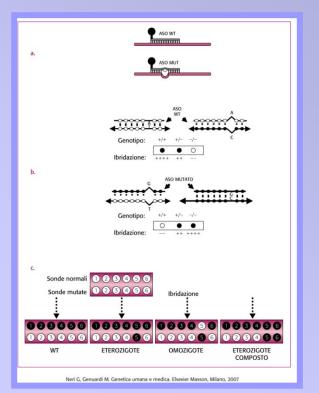
- ✓ Facilità di prelevare campioni da analizzare, approccio meno invasivo e rischioso
- ✓ Certezza della diagnosi di disordini in cui vi è un'alterazione di una proteina Tessuto specifica ed il tessuto è difficilmente ottenibile
- ✓ Individuazione con certezza degli eterozigoti per malattie autosomiche recessive
- ✓ Specificità dei risultati e possibilità di ottenere informazioni anche sulla gravità del fenotipo (Correlazione Genotipo-Fenotipo se definita)
- ✓ Migliore Pianificazione di una terapia
- ✓ Insostituibile per la Diagnosi prenatale (CVS, LA) specialmente per quelle patologie per le quali il gene, ed il difetto metabolico, non è espresso nei villi o negli amniociti
- Terapia in utero o immediatamente alla nascita
- Scelta di interrompere la gravidanza

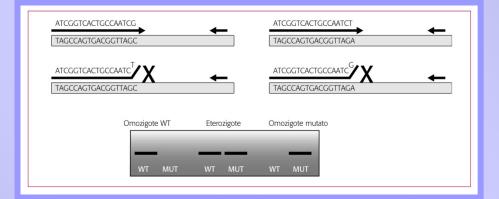
Analisi Molecolare

Applicazioni della PCR

Ricerca di mutazioni note	Ricerca di mutazioni ignote
Delezioni • Omozigosi • Emizigosi	SSCP DGGE dHPLC
Alterazione di siti di restrizione	PTT
ASO	Sequenziamento diretto
ARMS	
OLA	
Controllo delle dimensioni di triplette ripetute	

ASO = Allele Specific Oligoprobe; ARMS = Amplification Refractory Mutation Systems; OLA = Oligonucleotide Ligation Assay; SSCP = Single Strand Conformation Polymorphism; DGGE = Denaturing Gradient Gel Electrophoresis; dHPLC = Denaturing High Performance Liquid Chromatography; PTT = Protein Truncation Test.

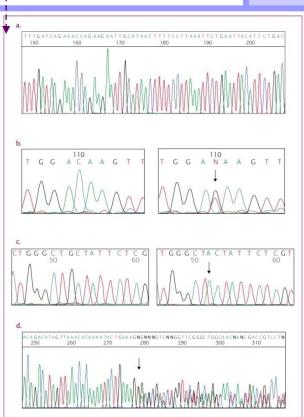

Neri G, Genuardi M. Genetica umana e medica. Elsevier Masson, Milano, 2007


Ricerca di mutazioni note Delezioni Omozigosi Emizigosi Alterazione di siti di restrizione. **ASO** Controllo delle dimensioni di triplette ripetute Sonde allelespecifiche Sonda comune Omozigote WT Omozigote mutato Figura 3.14 Rappresentazione schematica di un saggio di OLA PCR. Dopo una reazione di PCR multiplex, si procede a un saggio multiplo rigina 3.1% Aspiressimations so in material transfer and the Control of the Contr

la OLA PCR vengono analizzate le 31 mutazioni più frequenti nella popolazione caucasica. Le sonde comuni sono marcate con fluorocromi diversi, in particolare FAM (rosa), HEX (neo) e TET (rosso); L'analisi evidenzia la presenza di un dioppio segnale corrispondente a un dioppio pricco in corrispondenza della mutazione AF508 e della mutazione intronica 1898+1 G >A, dimostrando che il paziente e deterologiote com-

Neri G. Genuardi M. Genetica umana e medica. Elsevier Masson. Milano. 2007

posto per queste due mutazioni. WT = Wild-type.


Ricerca di mutazioni ignote

SSCP DGGE

dHPLC

PTT

Sequenziamento diretto

Neri G. Genuardi M. Genetica umana e medica. Elsevier Masson, Milano, 2007

Figura 3.20 Esempio di un elettroferogramma ottenuto per sequenziamento automatico. Ogni picco, con uno pseudocolore diverso (rosso-timina, verde-adenina, nero-guanina, blu-citosina) corrisponde a una banda e quindi a una base direttamente rilevata dal software (a). Presenza di una mutazione puntiforme in eterozigosi (C > T): si evidenzia per la contemporanea presenza di due picchi nella stessa posizione (b). Presenza di una mutazione puntiforme in omozigosi (G > T) evidenziabile come la presenza di un picco singolo corrispondente al nucleotide mutato (c). Presenza di una mutazione frame-shift in eterozigosi. Dal punto mutato, indicato dalla freccia, si sovrappongono due diverse sequenze corrispondenti all'allele normale e a quello muta-

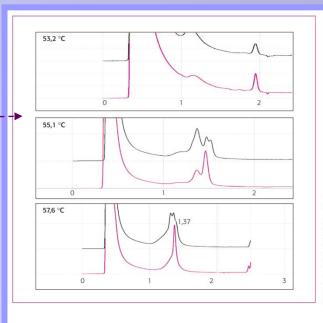


Figura 3.18 Screening mutazionale di un frammento dell'esone 11 del gene BRC42. I cromatogrammi sono stati ottenuti con analisi dHPLC. Per ogni temperatura sono illustrate le curve di eluizione di un campione normale (in basso) e di un campione eterozigote per una mutazione (in alto). La mutazione è exidenziabile a due delle tre temperature di corsa (55,1 ℃ e 57,6 ℃) come la presenza di un picco aggiuntivo.

Neri G, Genuardi M. Genetica umana e medica. Elsevier Masson, Milano, 2007



Figure 4 | Urea-cycle disorders, small-molecule diseases. The urea cycle consists of a group of enzymes that generate ure a from nitrogen that is donated from ammonia and aspartate. Embedded within the urea cycle is the arginine-citrulline cycle, which produces nitric oxide. Disease-causing mutations have been identified in all enzymes and transporters shown here. The most common urea-cycle disorder is ornithine transcarbamylase deficiency (OTCD, OMIM 311250). The other urea-cycle disorders are deficiencies of N-acetyl glutamate synthetase (NAGS, OMIM 237310), carbamyl phosphate synthetase (CPS, OMIM 237300), argininosuccinic acid synthetase (ASS, OMIM 215700), argininosuccinic acid lyase (ASL, OMIM 207900, also known as argininosuccinic aciduria (ASA)), and arginase I (ARG1, OMIM 207800). AGC, aspartateglutamate carrier (citrin); NOS, nitric-oxide synthase; ORNT1, ornithine translocase-1.

Citrullinemia

Valore prognostico ancora incerto delle Mutazioni genetiche Finora identificate

Deficit di Argininosuccinato sintetasi

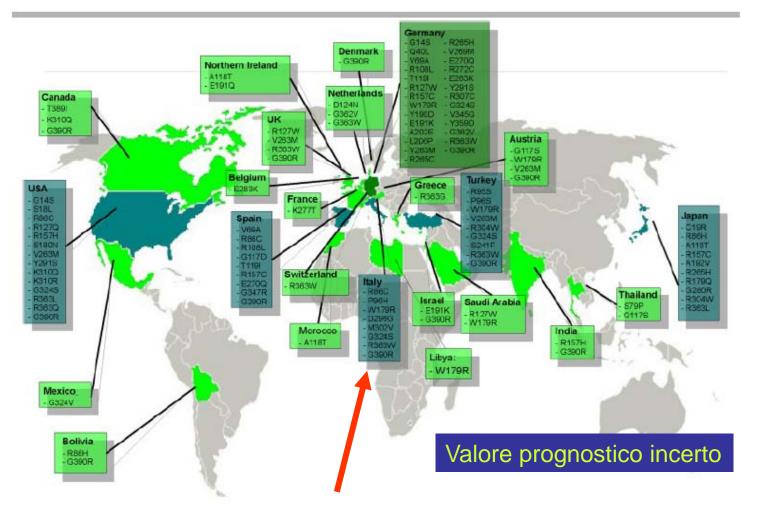
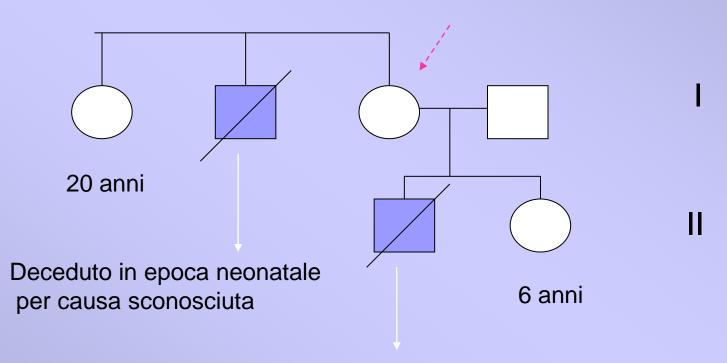
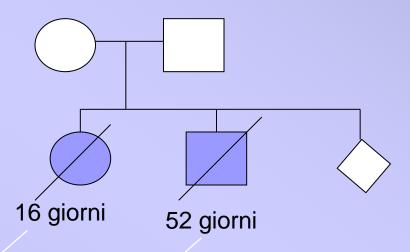




Figure 3. Geographical distribution of ASS missense mutations. Color code: light green, countries in which one to seven different mutations have been described; turquoise, countries with eight to 19 mutations; and dark green, countries with 20 or more mutations. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]


Deficit di OTC

Deceduto in terza giornata iperammoniemia

LSD

Idrope generalizzata

Galattosialidosi precoce infantile

HFI (Intolleranza ereditaria al fruttosio)

Procedure invasive per la diagnosi prima del clonaggio del gene

Analisi mutazionale fattibile e avvantaggiata dalla conoscenza dell'epidemiologia molecolare

La ricerca delle mutazioni più frequenti è in grado di confermare la diagnosi quasi nel 100% dei casi

Tabella 4-2. Mutazioni del gene dell'aldolasi B in 19 pazienti italiani con intolleranza ereditaria al fruttosio

(da Santamaria e coll., J Med Genet 33: 786-788, 1996)

A149P 29 MDΔ4 18,5 N334K 5,2 Y203X 5,2 R303W 5,2 AA20 5,2	Mutazione	Frequenza allelica %
A149P 29 MDΔ4 18,5 N334K 5,2 Y203X 5,2 R303W 5,2 ΔA20 5,2	A174D	
N334K 5,2 Y203X 5,2 R303W 5,2 AA20 5,2	A149P	
7203X 5,2 R303W 5,2 AA20 5,2	MDΔ4	18,5
303W 5,2 3A20 5,2	N334K	5,2
1303W 5,2 1A20 5,2	Y203X	5,2
256P 2.7	R303W	5,2
256P 2.7	1A20	5,2
2,7	L256P	2,7
the trade of the state of the s		to be by the state of the state
PRINCE STOCKED BY BY CHELLIS		arient la poer

Genotipo	Frequenza del genotipo %	
A149P/A174D	21	
A149P/A149P	10,5	
A174D/ΔA20	10,5	
A174D/MD∆4	10,5	
A149D/MD∆4	10,5	
A174D/A174D	5,3	
ΜΟΔ4/ΜΟΔ4	5,3	
MD∆4/N334K	5,3	
N334K/L256P	5,3	
R303W/R303W	5,3	
A174D/Y203X	5,3	
A149P/Y203X	5,3	

Buona Correlazione Genotipo-Fenotipo

GD Malattia di Gaucher

▶200 Mutazioni in GBA(deficit di glucocerebrosidasi)▶ in rari casi del suo attivatore saposina C

Genetic medicines: treatment strategies for hereditary disorders

rmochia F. O connor ana Ronaid G. Crystar

Abstract | The treatment of the more than 1,800 known monogenic hereditary disorders will depend on the development of 'genetic medicines' — therapies that use the transfer of DNA and/or RNA to modify gene expression to correct or compensate for an abnormal phenotype. Strategies include the use of somatic stem cells, gene transfer, RNA modification and, in the future, embryonic stem cells. Despite the efficacy of these technologies in treating experimental models of hereditary disorders, applying them successfully in the clinic is a great challenge, which will only be overcome by expending considerable intellectual and economic resources, and by solving societal concerns about modifications of the human genetic repertoire.

Metabolic manipulation The use of dietary modification or small molecule therapy to compensate for a deranged

biological process.

Protein augmentation A therapy in which a missing protein is replaced by the administration of a protein that has been purified from mammalian cells/tissues or synthesized as recombinant

With the sequencing of the human genome and the concomitant understanding of genotype-phenotype relationships, increasing attention has been paid to applying this knowledge to treating inherited diseases. Whereas strategies such as metabolic manipulation and protein augmentation have been remarkably successful in treating some genetic diseases (BOX 1), the real therapeutic breakthroughs for hereditary disorders will depend on the development of 'genetic medicines': therapies that compensate for an abnormal phenotype associated with a particular genotype.

Of the approximately 25,000 genes that comprise the human genome, mutations in more than 1,800 have already been identified as causing hereditary disorders (Ensembl, OMIM). The focus of this review is the use of genetic medicines to treat monogenic hereditary disorders. Because so many single gene mutations are known, the logic is compelling that if sufficient correction or compensation can be achieved with genetic medicines, monogenic disorders could be prevented and/or treated. By contrast, current genetic medicines cannot correct the complex phenotype associated with the hundreds of genes that are typically affected in chromosomal disorders (such as trisomy 21) or the multiple genetic variations that underlie complex disorders. For these disorders, strategies are being developed to compensate for, or to modify, diseased organs. Examples include gene therapy to induce angiogenesis to bypass blocked coronary arteries, or stem cell therapy to regenerate cardiac myocytes to treat a failing myocardium.

Three broad categories of genetic medicines are being tested in the clinic: somatic stem cells (SSCs), gene transfer and RNA modification. In the future, the application of embryonic stem cells (ESCs) will be assessed. For each strategy, the fundamental approach is to modify the gene expression repertoire of a subset of somatic cells/organs of the affected individual. No current strategy targets the germ line. The different categories of genetic medicine are not mutually exclusive, and it is likely that genetic are centred on transferring genetic material to correct or medicines of the future will include various combinations of these approaches.

Genetic medicines are simple in concept, but challenging to make a therapeutic reality. We first outline the general concepts that are applicable to genetic medicines. We then review the genetic medicine strategies being developed to treat monogenic disorders, including those that involve the use of SSCs (excluding combined SSCgene-transfer strategies, which are discussed in the section on gene transfer), gene transfer, RNA modification, and ESCs. For each of these strategies we describe the current status of applying these therapies to treat hereditary human disorders and the biological challenges in making genetic medicine therapies a reality. Finally, we discuss the future of genetic medicines, including the regulatory, economic and social hurdles in developing genetic medicines. To provide a historical context, strategies for treating these disorders in the pre-genetic medicine era are summarized in the Supplementary information S1-S3 (tables).

Genetic medicines - general considerations

The concept underlying all genetic medicines is that transfer of genetic material (for example, coding for a

Department of Genetic Medicine Well Medical College of Comed University 51 5 East 71 st Street, S-1000, New York 10021, USA Correspondence to R.G.C. e-mailgeneticmedicine@med. cornell adu doi:10.1038/nrg1829

"Pre-genetic medicine"

Box 1 | Treating hereditary disorders in the pre-genetic medicine era

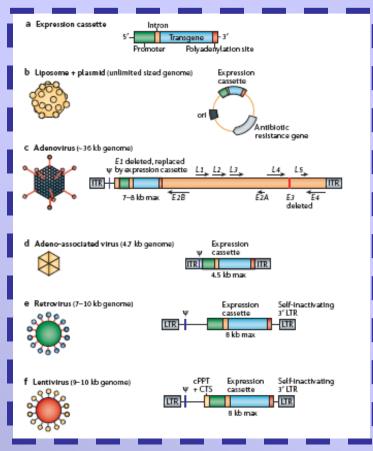
Before the development of genetic medicines, strategies for treating hereditary disorders focused on metabolic manipulation and protein augmentation therapy. For some monogenic disorders, success with these approaches has been remarkable.

Metabolic manipulation

The basic concept of metabolic manipulation is to use dietary or small molecule therapy to compensate for a deranged biological process, or in some instances, to prevent the complications of therapies used to correct the abnormal phenotype (see Supplementary information 52 (table) for a summary and references). The simplest form of metabolic manipulation is diet modification (such as phenylalanine restriction to treat phenylketonuria). For some disorders, successful therapy depends on combining diet manipulation with drugs (for example, for familial hypercholesterolaemia this involves the combination of a low-cholesterol diet and statin inhibitors of hydroxymethylglutaryl. co-enzyme A (HMG CoA) reductase. Another strategy involves stimulating the expression of a protein that will substitute for the abnormal protein — for example, hydroxyurea drug therapy is used to stimulate expression of fetal haemoglobin (HbF, (α, γ) levels to compensate for the abnormal sickle cell haemoglobin (HbS, (α, β)), therefore reducing the sickle crises of sickle cell anaemia. Alternatively, if the mutant protein is functional it can be effective to upregulate the expression of the mutant protein; an example is 'impeded' androgen therapy for C1-inhibitor deficiency, which is an autosomal dominant disorder that causes hereditary angioedema. Metabolic therapies can also be used to treat the complications from the treatment of genetic disorders, such as treatment of thalassaemia with the iron-chelating agent desferrioxamine; this drug prevents the organ failure that would otherwise be caused by the iron overload from the frequent red blood cell transfusions that are required to treat the primary phenotype. High-throughput screening of chemical libraries is being used to identify small molecules that modify the conformation of misfolded mutant proteins, which enables mutant proteins to traffic and/or function normally, or otherwise trick chaperones and other organelle-specific quality-control systems to accept the misfolded protein.

Protein augmentation

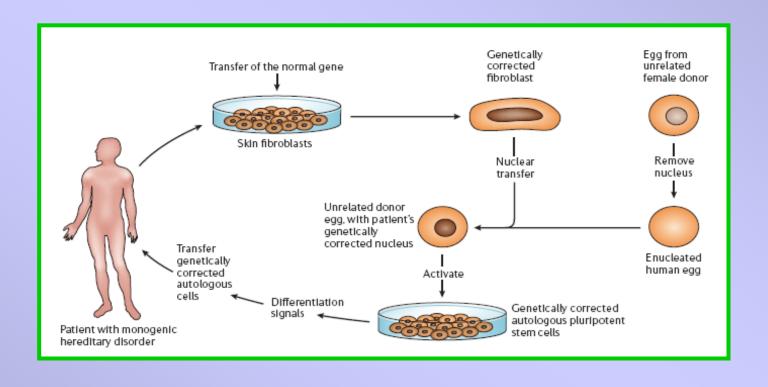
The concept of protein augmentation therapy is simple - purify the missing protein and return it to the patient. This therapy is used in several hereditary disorders, including cystic fibrosis, coagulation disorders, x1-antitrypsin deficiency, immunoglobulin deficiencies, endocrine disorders and lysosomal storage diseases (see Supplementary information S3 (table)). Protein augmentation therapy is most applicable to treating hereditary disorders in which the deficient protein functions in the extracellular milieu. If the protein has to reach sites from which it was prevented from diffusing (such as the brain), systemic protein augmentation therapy is not effective. When the phenotype involves an intracellular protein, protein augmentation therapy can be effective only if there is a mechanism to import the protein into a compartment of the cell relevant to the abnormal phenotype, such as protein augmentation therapy for the lysosomal storage disorders. Other challenges for treating hereditary disorders with protein augmentation therapy include: maintaining venous access to administer the protein; infection; supply shortages of the therapeutic agent; cost; requirement of frequent, repeated administrations; and the potential allergic, inflammatory and immune responses to the infused proteins


Type of therapy	Disorder	Abnormal gene	Treatment	Outcome References
Dietary ± drugs to modify metabolic	Phenylketonuria	Phenylalanine hydroxylase	Lifelong restriction of dietary Normal ph su	development, 1,2
pathways	Galactosemia	Galactose-1- phosphate uridyltransferase	Li an	
	Lactose intolerance	Lactase-phlorizin hydrolase	Av ad	
	Hereditary fructose intolerance	Aldolase B	El an	
	Maple syrup urine disease	Branched-chain α- keto acid dehydrogenase	Li die ac	
	Familial hypercholesterolemia	Low density lipoprotein receptor	Ac ch Figura 1.11 Le donne in questa f trambe sono omozigoti per la stes la fenilalanina idrossilasi (<i>PAH</i>). Le le due), a cui la PKU è stata diagr	sa mutazione nel gene per a sposa (la più giovane del-
	Glycogen storage disease I	Glucose-6- phosphatase	Fr nascita, è stata sottoposta subito gli d'onore, la sorella più vecchia, la	alla dieta. Alla damigella
	Hereditary orotic aciduria	UMP synthase ³	La sticata troppo tardi e la dieta non	ha portato benefici.
	Phosphoglycerate dehydrogenase deficiency	Phosphoglycerate dehydrogenase	Or supplements	3

		tactor		corrected	
Emphysema	α1-antitrypsin deficiency	α1-antitrypsin	Pooled human plasma	Decreased mortality from emphysema	8,9
Immune deficiency	Severe combined immune deficiency	Adenosine deaminase		Reduced incidence of infections	10
Endocrine disorders	Growth hormone deficiency	Growth hormone	Recombinant growth hormone	Normal growth	11
	Congenital leptin deficiency	Leptin		Normalization of hyperphagia; reduction in body mass	12
	Congenital neurogenic diabetes insipidus	Anti-diuretic hormone	Recombinant anti-diuretic hormone	Abolishment of polyuria and polydipsia	13

S3 | Reports of correction of hereditary disorders by transplantation of unmodified non-autologous bone marrow

Category	Disorder	Affected gene	Outcome	References ²
Lysosomal storage disorders	Mucopolysaccharidosis type I (Hurler syndrome)	α-L-iduronidase	Significant substrate reduction in CNS and peripheral organs; bone deformities and corneal clouding persist	1,2
	Mucopolysaccharidosis type II (Hunter syndrome)	Idurondate-2- sulfatase	Marginal improvement in visceral pathology; no effect on CNS degeneration	3
	Mucopolysaccharidosis type III (Sanfilippo syndromes)	Different genes affected in different forms ³	No evidence of long-term slowing of cognitive decline	4,5
	Mucopolysaccharidosis type IV (Morquio syndromes)	Different genes affected in different forms ⁴	Failed to improve skeletal abnormalities	5
	Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome)	Arylsulfatase B	Improved cardiopulmonary function and organomegaly, but not neurologic function; bone deformities persist	6
	Mucopolysaccharidosis type VII (Sly disease)	β-glucuronidase	Increased β-glucuronidase activity in lympocytes; improvements in motor function	7
	Gaucher disease	Glucocerebrosidase	Favorable psychological development, clearance of Gaucher cells in the liver, spleen and lungs	8
	Niemann-Pick A and B	Sphingomyelinase	Decreased accumulation of sphingomyelin in liver, spleen and bone marrow; no effect on CNS degeneration in type A	9,10
	Aspartylglucosaminuria	Aspartylgluco- aminidase	Increased aspartylglucosaminidase activity in peripheral blood leukocytes; phenotype not improved over long-term	11,12


Gene transfer

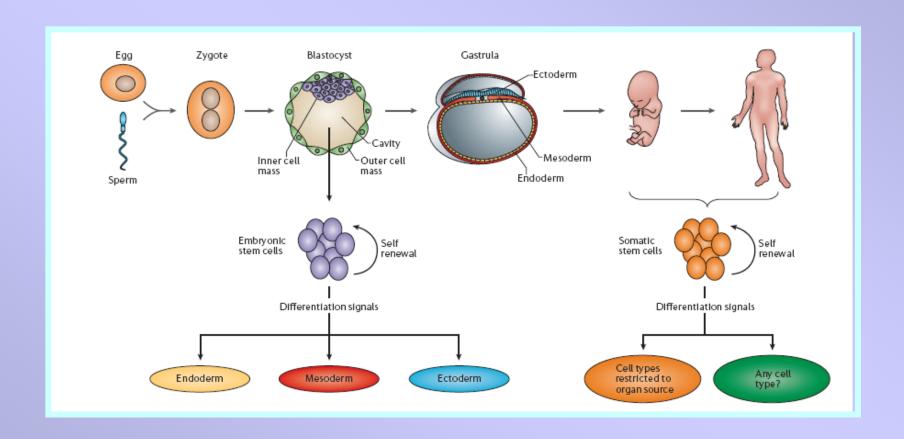
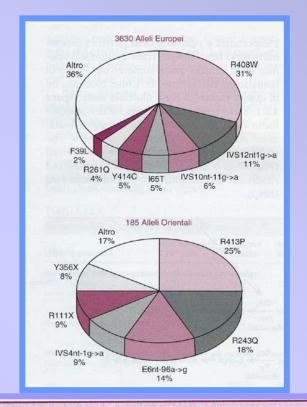

Lista dei trials approvati su :
"Gene Therapy Clinical Trials Worldwide "
web site
(www.wiley.co.uk/genetherapy/clinical)
e su "the Clinical Trials in Human Gene
Transfer "web site
(www4.od.nih.gov/oba/rac/clinicaltrial.htm)

Table 1 Gene-transfer trials for monogenic hereditary disorders*						
				Evidence	for phenotype corr	ecτlon‡
Vector	Hereditary disorder (references ⁶)	Transgene	Target cells	In vtvo GEI (mRNA)	In vivo biochem., physiological or imaging methods	CI
Plasmid ±; liposome (ex vivo)	Haemophilia A (136)	FactorVIII	Fibroblasts	NA	±	±
Plasmid ±; liposome (in vivo)	Cystic fibrosis (137–144)	CFTR	Nasaland airway epithelium	±	±	No
	0:1-antitrypsin deficiency (145)	0:1-antitrypsin	Nasal and respiratory tract epithelium	±	No	No
	Canavan disease (146)	Aspartoacylase	CNS	?	?	?
	Muscular dystrophy (147)	Dystrophin	Muscle	±	No	No
Retrovirus (ex vivo)	Adenosine deaminase deficiency (17,75,77,78,148,149)	Adenosine deaminase	T cells, CD34 cells, cord blood, bone marrow———————————————————————————————————	YES	YES	YES
	Familial hypercholesterolaemia (74,150)	Low-density lipoprotein receptor	Hepatocytes	Yes	Yes	No
	Gaucher disease (151)	Glucocerebrosidase	Blood CD34+, bone marrow CD34+	±	No	No
	Fanconi anaemia (152,153)	Complementation group CorA	Blood CD34 cells	±	No	No
	Chronic granulomatous disease (154)	p47 phagocyte NADPH oxidase	Blood CD34+	±	No	No
	X-linked severe combined immunodeficiency (80-82,155)	Common Y-chain of multiple cytokine - receptor-	Cord blood and bone marrow CD 34+	YES	YES	YES
	Leukocyte adherence deficiency (156,157)	CD18	Blood CD34+	±	No	No
	Severe combined immunodeficiency secondary to JAK3 deficiency (158)	JAK3	Bone marrow CD34+	?	?	?
	Haemophilia B (150)	FactorIX	Skinfibroblasts	NA	±	No
Retrovirus (invivo)	Haemophilia A (160)	FactorVIII	intravenous*	±	±	No
Adenovirus serotypes 2 and 5** (in vivo)	Cystic fibrosis (32,37, 42–45,161,162)	CFTR	Nasal and airway epithelium	Yes	Yes	No
	Ornithine transcarbamylase deficiency (49,163)	Ornithine transcarbamylase	Liver	±	±	No
_	Haemophilia A (50)	FactorVIII	Liver	±	±	No
Adeno- associated virus serotype 2 (invivo)	Cystic fibrosis (67,164–166)	CFTR	Nasal, airway and maxillary sinus epithelium	No	No	No
	Haemophilia B (66,167; see the ASGT Stakeholder's Report in the Further information)	Factor IX	Muscle, liver	Yes	Yes	No
	Muscular dystrophy (66)	α,β,γ,Δ-sarcoglycan	Muscle	?	?	?
	Canavan disease (146,168)	Aspartoacylase	CNS	?	?	?
	Late infantile ceroid lipofuscinosis (169)	CLN2 (tripeptidyl peptidase 1)	CNS	?	?	?

Modello per "Genetic Medicine" Gene transfer + Somatic cell nuclear transfer + Stem cell technologies

Embryonic Stem Cells e Somatic Stem Cells



PKU....eterogeneità allelica e di locus

Eterogeneità al locus del		menine.			
Difetto genetico	Incidenza/ 10 ⁶ nati	Enzima affetto	Localizzazione del gene	Ereditarietà	Trattamento
Mutazioni nell'apoenzima	fenilalanina id	rossilasi	to the state of th	endrojeka ya	MURE CALLETTING TO THE PARTY OF
PKU classica	5-350	PAH	12q24.1	AR	Dieta con poca fenilalanina
Varianti della PKU	meno della PKU classica	PAH	12q24.1	AR	Dieta con poca fenilalanina (meno restrittiva di quella richie sta per curare i pazienti PKU)
Iperfenilalaninemia non-PKU	15-75	PAH	12q24.1	AR	Nessuno o dieta con poca feni lalanina non restrittiva
Mutazioni nei geni che cod	lificano per gli	enzimi del	metabolismo dell	a tetraidrobi	opterina
Danneggiato riciclo di BH ₄	1-2	PCD	10q22	AR	Dieta con poca fenilalanina più L-dopa, 5-HT, carbidopa
	re squotunzio	DHPR	4p15.31		Dieta con poca fenilalanina più L-dopa, 5-HT, carbidopa e aci- do folico
Danneggiata sintesi di BH ₄		GTP-CH	14q22	AR	Dieta con poca fenilalanina più L-dopa, 5-HT, carbidopa, acido folico e un dose farmacologica di BH ₄
		6-PTS	11q22.3-23.3	AR	Come sopra

5-HT = 5-idrotriptofano; 6-PTS = 6-piruvoiltetraidropterina sintetasi; BH_4 = tetraidrobiopterina; DHPR = diidropteridina riduttasi; GTP-CH = guanosina trifosfato cicloidrolasi; PAH = fenilalanina idrolasi; PCD = pterin 4- α -carbinolammina riduttasi; PKU = fenilchetonuria.

PKU....eterogeneità allelica e di locus

Il gene della fenilalanina idrossilasi: mutazioni, aplotipi e fenotipi clinici nella popolazione di discendenza europea

Mutazioni	% di attività	Rappresentazione delle mutazioni	Aplotipo associato [†]	Fenotipo associato all'omozigote [‡]
Arg 408 Trp	<1%	31%	1, 2, 5, 44	Classica PKU
IVS12nt1g $\rightarrow a^{\S}$	<1%	11%	3	Classica PKU
IVS10nt 2 11g \rightarrow a	non nota	6%	6, 10, 34, 36	· Classica PKU
Ile 65 Thr	~25%	5%	9 Non-PKU HPA	Classica PKU, Variante PKU,
Tyr 414 Cys	30-50%"	5%	4 Non-PKU HPA	Variante PKU,
Arg 261 Gln	30%"	4%	1, 2, 4, altri	PKU o variante PKU